
Milestone 4 Report for:

Middletown Radio
Application

Development Team:
Rachel Harvey

Nick Torres
Kristen Weber
Seth Winslow

CS 495: Capstone

Ball State University
April 27, 2018

Table of Contents

1.0: Project Information 7

1.1: Client Introduction 7
1.2: Team Contact Information 7
1.3: Statement of Task 7

2.0: Preliminary Requirements Analysis 8
2.1: Overview of the Application: 8
2.2: Functional Requirements: 8

2.2.1: Menu - Requirements 8
2.2.2: Home (Radio) - Requirements 8
2.2.3: Load - Requirements 9
2.2.4: Save - Requirements 10
2.2.5: Save - Optional 10
2.2.6: Setup - Requirements 10
2.2.7: List - Requirements 11
2.2.8: Admin Panel - Requirements 12
2.2.9: Public Website Portion - Requirements 12
2.2.10: Backend Configurations - Requirements 12

2.3: Non-Functional Requirements: 12
2.4: GUI Mockups 13
2.5: Suggested Deliverables 17

2.5.1: Management Deliverables 17
2.5.1.1: Gantt Chart 17
2.5.1.2: Repository README 17
2.5.1.3: Admin README 17

2.5.2: Technical Deliverables 18
2.5.2.1: Admin Panel 18
2.5.2.2: Minimum Functioning Apps 18
2.5.2.3: Fully Functioning Apps 18
2.5.2.4: Public Facing Website Side 18

3.0: Plan of Attack 19
3.1: Project Plan 19
3.2: The Process 19

3.2.1: Development Methodology 19
3.2.2: Technical Details 20

3.3: Visibility 20

3.3.1: Within the Team 20
3.3.2: With the Client 20

4.0: Business and Risks 20
4.1: Technical Requirements 20

4.1.1: Version Control and Issue Tracking 20
4.1.2: Backend 20
4.1.3: Admin Panel 21
4.1.4: Mobile - General 21
4.1.5: Mobile - iOS 21
4.1.6: Mobile - Android 21

4.2: Business Considerations 21
4.2.1: Apple and Android Development Profiles 21
4.2.2: Copyright ownership 21

4.3: Risk Analysis 21
4.3.1: Use of React Native 21
4.3.2: Full app release 22

4.4: Conclusion Milestone #1 22

5.0 Current Progress 23
5.1: Project Update 23

6.0 Object-Oriented Analysis 23
6.1: Actors 23
6.2: Use Case Diagram 24
6.3: Use Case Specifications 25

6.3.0: Use Case 1: Assign Presets 25
6.3.1: Use Case 2: Save Preset Bank 25
6.3.2: Use Case 3: Delete Preset Bank 25
6.3.3: Use Case 4: Listen to Station 26
6.3.4: Use Case 5: Find Stations 26
6.3.5: Use Case 6: Filter Stations in Application 26
6.3.6: Use Case 7: Direct to Submit a Station 27
6.3.7: Use Case 8: Login to Web Server / Website 27
6.3.8: Use Case 9: Add a Station 28
6.3.9: Use Case 10: Create New User for Backend 28
6.3.10: Use Case 11: Load Application 28

6.3.2: Use Case Sequence Diagrams 29
6.4: Domain Modeling 43

6.4.1: Entity Relationships 43
6.4.2: Class Diagram 44

6.5: Traceability 45
6.5.1: Case Requirements Matrix 45
6.5.2: Requirements - Dependency Matrix 47

7.0: Technical Summary 48
7.1: iOS Considerations 48
7.2: Android Considerations. 48
7.2: Conclusion for Milestone #2 49

8.0: User Interface Design 50
8.1 Mobile Applications Designs 50
8.2 Admin Panel Designs 51

9.0: Database Design 53

10.0: Software Architecture 55
10.1: Architecture Overview 55

10.1.1: Mobile Applications 55
10.1.2: Web Server 56
10.1.3: Admin Panel 56
10.1.4: Submission & Report Forms 56

10.2: Detailed Design 57
10.2.1: Backend 57
10.2.2: iOS App 58
10.2.3: Android App 59
10.2.4 Web Admin Front End 60

10.3: Detailed Major Use Cases 61
10.3.1: Mobile Application Use Cases 61

10.3.1.1: Use Case 1: Assign Presets 61
10.3.1.2: Use Case 2: Listen to Station 62
10.3.1.3: Use Case 3: Find Stations 63
10.3.1.4: Use Case 4: Direct to Submit a Station 64
10.3.1.5: Use Case 5: Load Application 65

10.3.2: Admin Panel Use Cases 66
10.3.2.1: Use Case 6: Login to Web Server / Website 66
10.3.2.2: Use Case 7: Add a Station 67
10.3.2.3: Use Case 8: Create New User for Backend 67

11.0: Future Considerations for Milestone #3 69

12.0 Progress Update for Milestone #4 70
12.1 Progress Update 70

12.2 GANTT Chart 70

13.0 Testing / Validation 70
13.1 iOS Development 70

13.1.1: Unit Testing 70
13.1.2: Functional Testing 71

13.2 Android Development 73
13.2.1: Unit Testing 73
13.2.2: Functional Testing 74

13.3 Front End Development 76
13.3.1: Functional Testing for Admin Panel 76
13.3.2: Functional Testing for Public Website 78

13.4 Backend Development / Server 79
13.4.1 Information 79

14.0 Documentation 80
14.1 iOS / Android User Manual 80

14.1.1 Tutorials / Documentation 80
14.1.2 Read Me Android 84
14.1.3 Read Me iOS 85

14.2 Front End Development User Manual 85
14.2.1 Login Tutorials 85
14.3.2 Create New User Tutorials 86
14.3.3 Admin Panel Tutorials 88

14.3 Backend Development / Server User Manual 93
14.3.1 End Points 93

14.3.2.1 GetApplicationData.php 93
14.3.2.2 AddVote.php 93
14.3.2.3 AddStation.php 93
14.3.2.4 GetPopular.php 93
14.3.2.5 UpdateStation.php 94
14.3.2.6 UEAddStation.php 94
14.3.2.7 ReportStation.php 94

15.0 Deployment / Handover plan 94
15.1 iOS Development 94

15.1.1 Current Configuration 94
15.1.2 Reproduce 94

15.2 Android Development 94
15.2.1 Current Configurations 94
15.2.2 Reproduce 95

15.3 Front End Development 95

15.3.1 Current Configurations 95
15.3.2 Reproduce 95

15.4 Backend development 95
15.4.1 Current Configurations 95
15.4.2 Reproduce 95

15.5 Database 96
15.5.1 Current Configurations 96
15.5.2 Reproduce 96

16.0 Dependencies 97
16.1 iOS Development 97
16.2 Android Development 97
16.3 Front End Development 97

16.3.1 AngularJS CDN 97
16.3.2 AngularJS Route CDN 97

16.4 Backend Development / Server 97
16.4.1 PHP 97
16.4.2 mySQL 98

17.0 Work Breakdown 98
Seth Winslow 98
Kristen Weber 98
Rachel Harvey 98
Nick Torres 98

18.0 Conclusions 98

1.0: Project Information

1.1: Client Introduction
Dr. Robert Willey is an Associate Professor at Ball State University in the School of
Music’s Music Media Production and Industry department. He has worked with many
Ball State Computer Science Capstone groups before for many different projects.

Most contact between the capstone group and the client is going to be done through
email. However, for meetings to demonstrate big updates, we will schedule meetings
with him. His contact information is as follows:

Robert Willey | rkwilley@bsu.edu | Music Instruction Building (MI) 211 | 765-285-5537

1.2: Team Contact Information
Rachel Harvey: raharvey@bsu.edu | 812-736-2817
Nick Torres: njtorres@bsu.edu | 630-470-7896
Kristen Weber: kmweber@bsu.edu | 812-363-4870
Seth Winslow: swwinslow@bsu.edu | 317-498-7558

1.3: Statement of Task
We are creating two mobile applications that allows listeners of the application to listen
to radio stations located in the Midwest as an alternative to larger commercial based
national radio stations. The client defines the “Midwest” as the states of Minnesota,
Iowa, Missouri, Wisconsin, Illinois, Indiana, Michigan, Ohio, and Ontario.

More specifically, listeners of the application will be able to listen to radio stations that
have been approved by the admin. Listeners will have the option to save sets of six
stations as preset banks, submit suggested stations for approval, scan all radio stations,
and customize the radio stations by geographical location, style, ownership, popular,
and list to be scanned.

We will also be creating an admin panel for our client to use. He will use this to manage
the stations that are on the application. He will be able to create, edit, review, and delete
stations that are stored in the database as well as edit and review categories in the
database.

mailto:rkwilley@bsu.edu
mailto:raharvey@bsu.edu
mailto:njtorres@bsu.edu
mailto:kmweber@bsu.edu
mailto:swwinslow@bsu.edu

2.0: Preliminary Requirements Analysis

2.1: Overview of the Application:
Middletown Radio Application is going to be a mobile application for iOS and Android.
The application allows you to listen to radio stations that are stored in the database and
that have been approved by the administrator of the application, Dr. Willey. There are
five main screens: Home, Load, Save, Setup, and List. Below you can see the
functional requirements for each one of these pages.

2.2: Functional Requirements:

2.2.1: Menu - Requirements
2.2.1.1: When the listener of the application clicks on the mobile menu, a screen will
slide out to cover ¾ of the screen width with the menu options: Radio, Load, Save,
Setup, Middletown Radio, and Suggest A Station.

2.2.1.1.1: When the listener clicks on Radio, they shall be redirected to the
radio screen.
2.2.1.1.2: When the listener clicks on ‘Load’, they shall be redirected to the load
screen.
2.2.1.1.3: When the listener clicks on ‘Save’, they shall be redirected to the
save screen.
2.2.1.1.4: When the listener clicks on ‘Setup’, they shall be redirected to the
setup screen.
2.2.1.1.5: When the listener clicks on ‘Middletown Radio’, they shall be
redirected to the Middletown Radio website.
2.2.1.1.6: When the listener clicks on ‘Suggest A Station’, they shall be
redirected to the Middletown Radio website to the page where they can
suggest a station.

2.2.2: Home (Radio) - Requirements
2.2.2.1: When the listener opens the app, a pop up will come up that says, ‘You can
continue using the app in portrait view, or you may flip your phone to see the radio in
landscape mode.’
2.2.2.2: When the listener clicks on one of the double arrow scan buttons, the radio will
scan through stations that currently match their setup requirements. The scan button will
then become red to indicate they are currently scanning.

2.2.2.2.1: The radio station will play for 5 seconds before changing to the next
station.
2.2.2.2.2: The radio will stop scanning when the listener clicks on the double
arrow again and the button color will change back to black.

2.2.2.3: When the listener clicks on one of the single arrow scan buttons, the station will
change to the next station that currently matches their setup requirements, and the
button will flash green.
2.2.2.4: When the listener clicks on ‘Play’, if the current station showing in the display
area isn’t playing, then it will begin playing and the button will turn green. If it is already
playing, then it will do nothing.
2.2.2.5: When the listener clicks on ‘Stop’, if the current station showing in the display
area is playing, then it will stop playing and the button will turn green. If it isn’t playing,
then it will do nothing.
2.2.2.6: When the listener clicks on a preset that has a station saved to it, the radio will
change to that station, add a heart next to the station title, and begin playing.
2.2.2.7: When the listener clicks on a preset that is a number, meaning a station is not
saved to it, then it will do nothing and the radio will continue playing the station it
currently has up.
2.2.2.8: When the listener long holds a preset button that currently has a number
number displaying, then the station currently playing will be saved in that preset spot.
The number in the preset area will change to the stations abbreviation and a heart will
appear next to the station title in the display area.
2.2.2.9: When the listener long holds a preset button that currently has a station
abbreviation displaying, then the station currently playing will be saved over the station
currently in that preset spot. The station abbreviation would change to the current station
abbreviation and a heart will appear next to the station title in the display area.
2.2.2.10: When the listener clicks on the question mark, a popup will display these
instructions: ‘You can use this screen to scan through radio stations and set presets. If
you would like to filter what stations you have playing on your radio, please go to setup
in the mobile menu’.

2.2.3: Load - Requirements
2.2.3.1: When the listener long holds on one of their preset banks, the listener will be
redirected to the home screen and they will see their presets for that preset bank and the
first preset will begin playing.
2.2.3.2: When the clicks holds on one of their preset banks, a pop up will display their list
of presets for that preset bank.

2.2.3.2.1: When the listener clicks on ‘Load’, they shall be redirected to the radio
with that preset bank loaded and it will have begun playing the first preset station.

2.2.3.3: When the listener clicks on ‘Delete’, small checkmarks will appear to the left of
each preset bank where the listener can then select which preset bank(s) they would like
to delete.

2.2.3.3.1: When the listener clicks on ‘Delete’ again, a pop up will display warning
the listener if they delete these banks they will be removed.

2.2.3.3.1.1: When the listener clicks on ‘Delete’, they shall be redirected
to the preset bank screen with their selected stations deleted.
2.2.3.3.1.2: When the listener clicks on ‘Cancel’, they shall be redirected
to the preset bank screen.

2.2.3.4: When the listener clicks on the question mark, a popup will display these
instructions: ‘You can use this screen to load in any of your currently saved preset banks
by long holding on one or delete any preset banks you have saved by clicking ‘Delete’
and then selecting which ones you would like to delete.’

2.2.4: Save - Requirements
2.2.4.1: When the listener clicks on ‘Save’, it adds a number to the list of preset banks
and allows listener to type in a new preset bank name.
2.2.4.2: When the listener clicks on ‘Delete’, small checkmarks will appear to the left of
each preset bank where the listener can then select with preset bank(s) they would like
to delete.

2.2.4.2.1: When the listener clicks on ‘Delete’ again, a pop up will display warning
the listener if they delete these banks they will be removed.

2.2.4.2.1.1: When the listener clicks on ‘Delete’, they shall be redirected
to the saved screen with their selected stations deleted.
2.2.4.2.1.2: When the listener clicks on ‘Cancel’, they shall be redirected
to the save screen.

2.2.4.2: When the listener clicks on the question mark, a popup will display these
instructions: ‘You can use this screen to save the current presets you have on your radio
by clicking ‘New’ or delete any of your currently saved preset banks by clicking ‘Delete’
and then selecting which ones you would like to delete.’

2.2.5: Save - Optional
2.2.5.1: When the listener clicks on one of their currently saved preset banks, it will save
the presets from their radio over the presets currently saved to that preset bank.

2.2.6: Setup - Requirements
2.2.6.1: When the listener clicks on ‘Geographical’, a pop up will display the
geographical locations the listener can select.

2.2.6.1.1: When the listener clicks on ‘Cancel’, the pop up will disappear and
nothing will happen.
2.2.6.1.2: When the listener clicks on ‘Done’, the locations will be saved and it will
the pop up will disappear.

2.2.6.1.3: When the listener clicks on one of the checkboxes, the stations in that
geographical area will be added to the stations that they will be scanning by on
the radio screen.

2.2.6.2: When the listener clicks on ‘Style’, a pop up will display the style options the
listener can select.

2.2.6.2.1: When the listener clicks on ‘Cancel’, the pop up will disappear and
nothing will happen.
2.2.6.2.2: When the listener clicks on ‘Done’, the styles will be saved and it will
the pop up will disappear.
2.2.6.2.3: When the listener clicks on one of the checkboxes, the stations of that
style will be added to the stations that they will be scanning by on the radio
screen.

2.2.6.3: When the listener clicks on ‘Ownership’, a pop up will display the ownership
options the listener can select

2.2.6.3.1: When the listener clicks on ‘Cancel’, the pop up will disappear and
nothing will happen.
2.2.6.3.2: When the listener clicks on ‘Done’, the ownerships will be saved and
the pop up will disappear.
2.2.6.3.3: When the listener clicks on one of the checkboxes, the stations in that
specific ownership category will be added to the stations that they will be
scanning by on the radio screen.

2.2.6.4: When the listener clicks ‘Popular’, a pop up will display the popular stations the
listener can select.

2.2.6.4.1: When the listener clicks on ‘Cancel’, the pop up will disappear and
nothing will happen.
2.2.6.4.2: When the listener clicks on ‘Done’, the popular stations selected will be
saved and the pop up will disappear.
2.2.6.4.3: When the listener clicks on one of the checkboxes, that popular station
will be added to the stations that they will be scanning by on the radio screen.

2.2.6.5: When the listener clicks on ‘List’, they shall be redirected to the list screen.
2.2.6.6: When the listener clicks on the question mark, a popup will display these
instructions: ‘You can use this screen to customize your radio stations by geographical
location, style, ownership, popular, and list of all stations by clicking on any option and
select which stations you would like to include or not include.’

2.2.7: List - Requirements
2.2.7.1: When the listener checks a station, it will be added to their selection of stations
when scanning.
2.2.7.2: When the listener unchecks a station, it will be removed from their selection of
stations when scanning.
2.2.7.3: When the clicks on a station name, it will display a pop up of the information for
that station.

2.2.7.4: When the listener clicks on the question mark, a pop up will display these
instructions: ‘You can use this screen to see what stations are currently going to be on
your radio and what won’t be on your radio. You can then check or uncheck certain
stations for your radio station selection.’

2.2.8: Admin Panel - Requirements

2.2.8.1: The admin will be prompted for login credentials to get into the admin panel.
2.2.8.2: If the admin has correctly put in their credentials, then they will be sent to the
home screen where they can select ‘Midwest’.
2.2.8.3: When the admin clicks Stations, all station data will be displayed and editable in
a table.
2.2.8.4: When the admin selects a filter for the table, such as popular or category, the
table will display station data based on the filter criteria.
2.2.8.5: Within the station table, there will be a clickable checkbox that indicates which
stations have been approved. If the admin clicks this box for a station row, it will toggle
the station to be published.
2.2.8.6: If the admin clicks on the download button, a download will begin to export the
current state of the database in csv format.

2.2.9: Public Website Portion - Requirements
2.2.9.1: On the public website, the web users will be able to view all the published radio
station data in a table format.
2.2.9.2: On the public website, web users will be able to submit a form to suggest new
radio station for admin approval.
2.2.9.3: When a web user is viewing the station table and selects a filter such as by
popular or category, the table will display the appropriate date for each filter.

2.2.10: Backend Configurations - Requirements
2.2.10.1: All of the station information is going to be stored on a mySQL database.

2.2.10.1.1: That stations will be stored in a stations table. This will include, ID,
Short Name, Long Name, City, State, Slogan, Genre ID, Ownership.
2.2.10.2 Both mobile applications, the admin panel, and the public website
features will make requests to a PHP API.

2.3: Non-Functional Requirements:
2.3.1: The application must be compatible for Android 4.1 and iOS 9 and above.
2.3.2: The UI of both applications should have some characteristics of a physical radio
such as preset buttons, scan functionality, etc.
2.3.3: The UI of the Android app and iOS app should be nearly identical in terms of the
design and technical limitations.

2.3.4: The application will update stations on open.
2.3.5: The application will preserve data usage when a station is not currently playing.
2.3.6: The backend needs to be written in PHP 4.3.0 or higher.

2.4: GUI Mockups
Below are our UI designs for our application. They may be subject to change throughout
development based on client feedback.

Figure 1: The home screen in landscape view.

Figure 2: The home screen in portrait view (left) and the home screen showing the help pop up (right).

This help pop up is how all help screens will look throughout the app.

Figure 3: The mobile menu slide out.

Figure 4: The load screen (left) and the presets for an individual preset bank pop up (right). The load

screen on the left looks similar to the save screen.

Figure 5: The load delete screen (left) and the setup screen (right). The load delete screen on the left

looks similar to the save delete screen.

Figure 6: The setup geographical location pop up (left) and the list screen (right). The design of the pop

up on the right is identical to the pop up for the other setup options.

Figure 7: The save screen once the listener clicks ‘New’.

Figure 8: Admin Screen displaying list of stations inside the application.

Figure 9: Admin view displaying the popular stations in the app with the popular count.

2.5: Suggested Deliverables

2.5.1: Management Deliverables

2.5.1.1: Gantt Chart
2.5.1.1.1 To keep our iterations and progress organized, a Gantt Chart will be
used to plan out our iterations and track our progress. This chart will be kept in our
Google drive folder so we all have access to update it when necessary.

2.5.1.2: Repository README
2.5.1.2.1: This file will contain the repository information for any future

developers. This will include dependencies, versions, releases and any other
important notes about the repo.

2.5.1.3: Admin README
2.5.1.3.1: This file will contain instructional information for the client and any
future admins about the different sections of the admin panel. This will include
how to create, approve, update, and delete current stations. Additionally, it will
include instructions on how to add additional categories, and download the
current state of the database to csv format.

2.5.2: Technical Deliverables

2.5.2.1: Admin Panel
2.5.2.1.1: In order to control the data, the client will need a panel where he can
approve submissions, add submissions manually, and edit current stations
should any information change. The current deadline is mid/late Fall 2017
semester.

2.5.2.2: Minimum Functioning Apps
2.5.2.2.1: By the end of the Fall 2017 semester, we will have two working apps,
with the minimum functionality possible, the ability to see a list of stations and
pick one to play.

2.5.2.3: Fully Functioning Apps
2.5.2.3.1: By the end of the Spring 2018 semester, we will have two fully
functioning apps with the ability to scan stations, customize radio stations, and
save presets.

2.5.2.4: Public Facing Website Side
2.5.2.4.1: By the end of the Spring 2018 semester, we will have the public
information about all the stations that are currently being stored in the database.

3.0: Plan of Attack

3.1: Project Plan
Our project is going to be completed using fourteen sprints which is defined in our Gantt chart.
For the first semester we will complete six sprints, and for the second semester we will complete
eight. Each sprint will be approximately two week long. By the end of the Fall 2017 semester,
we plan to have a functioning app that will display all of the stations that you can click on to
listen to. Then, by the end of the Spring 2018 semester, we plan to have all of the features
completed with a working app in the app store.

Figure 10: Gantt Chart

3.2: The Process

3.2.1: Development Methodology
For our project, we are going to be following an agile development process, comprised of two
week iterations. Following our Gantt chart, we plan to have a set number of tasks per iteration
that will be expected to be completed. In the event we do not complete a given task, we will
move that task into the next iteration. In the event the unfinished task is not of immediate
priority, it may be put off in favor of higher priority tasks.

Using this agile development process is in our best interest in order to adapt to client feedback,
as well as divide our work into manageable durations. Because our client is unsure about some
features and how they may interact with each other, we need to be prepared for change. By
only developing a set of tasks during an iteration we will be able tailor future iterations to
changing feedback. Additionally, some of our tasks include technologies we are not completely
familiar with. Because of this, we will want to extend the usual agile iteration of one week to two
so we have adequate time to complete these tasks.

3.2.2: Technical Details
Since we are developing for Android and iOS we will be exploring using React Native, but if
need be we will also use Android Studio and Xcode for development and develop each app
separate. For version control and issue tracking we will be using GitHub.

3.3: Visibility

3.3.1: Within the Team
We will communicate online via our group Slack team and share documents over Google Drive.
We will meet a minimum of Tuesdays and Thursdays 11:00-12:30 (right before class) with
additional times on Monday and Wednesday afternoon and evenings if necessary.

3.3.2: With the Client
Our client has indicated that he prefers to be “hands off,” so we will not be meeting regularly
with him. Instead will be communicating via email if we have questions or want to give him a
status update. We will reserve face to face meetings for larger concerns and for the review of
our progress as we reach major milestones.

4.0: Business and Risks

4.1: Technical Requirements
Though this may change, the following lists required technologies, divided by our group
members’ responsibilities:

4.1.1: Version Control and Issue Tracking
4.1.1.1: We will use GitHub account with permissions to read/write to our repo.

4.1.2: Backend
4.1.2.1: The required platform for backend is PHP version 5.3.

4.1.3: Admin Panel
4.1.3.1: The admin panel will consist of HTML/CSS/Javascript. We will also utilize
AngularJS.

4.1.4: Mobile - General
4.1.4.1: In order to use React Native for both Android and iOS development, we will
have to configure our individual development environments to utilize package managers
and mobile emulators/simulators. Depending on the operating systems available, this
may not be exactly the same for each developer’s environment.

4.1.5: Mobile - iOS
4.1.5.1: In the event that we need to supplement React Native with native iOS
development, we will need access to Xcode.

4.1.6: Mobile - Android
4.1.5.1: In the event that we need to supplement React Native with native Android
development, we will need access to Android studio.

4.2: Business Considerations

4.2.1: Apple and Android Development Profiles
4.2.1.1: The client will provide access to his accounts.

4.2.2: Copyright ownership
4.2.2.1: The copyright will be owned by the client, but the development team will be
allowed to include this project in our portfolios and resumes.

4.3: Risk Analysis

4.3.1: Use of React Native
4.3.1.1: React may need to be abandoned if it doesn’t suit our needs or give us enough
flexibility. This could result in a loss of time/work.
4.3.1.2: React only supports Android 4.1, might have functional limitations supporting a
lower API (16).

4.3.2: Full app release
4.3.2.1: In order to publish our app to the Apple App Store and Android Play Store, we
will need to go through their official approval processes. If our application is rejected for
any reason we will need to have contingency time to resolve any issues.
4.3.2.2: If we are able to release a minimum functioning app in December, this will make
May’s release smoother as the approval for updates is less intensive.

4.4: Conclusion Milestone #1
Our client has worked with Capstone groups in the past, and so has mostly reasonable
expectations of our finished product. However, he has been indecisive about some of the
features and their implementation, so scope creep could be an issue as the year continues. We
have agreed to deliver a minimum functioning app by the end of the Fall 2017 semester, and we
feel confident that this is achievable. Our client then hopes to begin advertising for the
application in order to gain an audience for the later app release at the end of the spring
semester, which will incorporate all of our requirements. His end goal is to both allow his
students to use the app for his classes, but on a larger scale attract more listeners to local
midwest radio stations, and we think our product could help him achieve this.
__

5.0 Current Progress

5.1: Project Update
2.1.0: Functional and Non-Functional requirements have not changed.
2.1.1: We have dropped the use of React Native and will instead be developing two
native apps. This does not affect us reaching our goals.

6.0 Object-Oriented Analysis

6.1: Actors
6.1.0: An actor called, the Listener, is a user using the radio application to listen to
stations.
6.2.0: An actor called, the Phone, is the mobile application.
6.3.0: An actor called, the Admin, is a person with credentials to login the admin panel
to edit stations on the application.
6.4.0: An actor, the Web Server, is the API and MySQL database located on a remote
server.

6.2: Use Case Diagram

Figure 11: Use Case Diagram

Above, you can see the use case diagram for our use cases. Since our project has a great
amount of use cases, this does not show all the use cases for our whole project. We have

acknowledged these use cases, but they are being implemented in a later iteration to prevent
our milestone project from being 100 pages.

Our diagram shows the actions our listener can perform and actions the admin can perform and
how the web server interacts with some of these use cases. An example being, a listener can
submit a station. When they do this, they get sent to the website to submit from a form. Once
they click ‘Submit’, it goes to the web server to add it to the database, where the admin can

approve it as a station.

6.3: Use Case Specifications

6.3.0: Use Case 1: Assign Presets
● Primary Actor: Listener
● Secondary Actor: Phone
● Precondition: Listener has installed and opened the application radio successfully or

selected one of their saved preset banks
● Main Flow:

1. Listener selects to a station
2. Listener long presses one of the spots in the preset area to assign station

● Alternate Flow:
*None

6.3.1: Use Case 2: Save Preset Bank
● Primary Actor: Listener
● Secondary Actor: Web Server, Phone
● Precondition: Listener has assigned one or more stations to preset area on play

screen
● Main Flow:

1. Listener clicks on menu button from play screen
2. Listener then clicks on ‘Save’ in the menu
3. Application redirects users to the save screen
4. Listener clicks on ‘New’ at the bottom the screen to add preset bank name
5. Application displays pop up for listener to type in the name they want for the

preset bank
6. Listener types in the name they want for their presets
7. Listener clicks ‘Save’ to save the preset bank
8. Application makes request to web server to set bank stations as favorites

● Alternate Flow:
 4a. Listener can click on a saved preset bank
 4b. Application will save current presets over old preset bank presets

7a. Listener clicks ‘Cancel’ to not save the preset bank

6.3.2: Use Case 3: Delete Preset Bank
● Primary Actor: Listener
● Secondary Actor: Phone
● Precondition: Listener has saved a preset bank
● Main Flow:

1. Listener clicks on menu button from play screen

2. Listener then clicks on ‘Save’ in the menu
3. Application redirects users to the save screen
4. Listener clicks on ‘Delete’ at the bottom the screen to delete a preset bank
5. List view adds checkboxes on the left side of preset bank name
6. Listener clicks desired stations to delete
7. Listener clicks ‘Delete’
8. Application displays delete warning box
9. Listener clicks ‘Delete’ to delete preset bank(s)

● Alternate Flow:
7a. Listener clicks ‘Cancel’ to not delete any preset bank(s)
9a. Listener clicks ‘Cancel’ to not delete any preset bank(s)

6.3.3: Use Case 4: Listen to Station
● Primary Actor: Listener
● Secondary Actor: Phone
● Precondition: Listener has installed and opened the application successfully
● Main Flow:

1. Listener clicks the play button on the radio screen
2. First station in the list will begin to playing

● Alternate Flow:
2a. Listener lost connection to internet and station didn’t begin to play

6.3.4: Use Case 5: Find Stations
● Primary Actor: Listener
● Secondary Actor: Phone
● Precondition: Listener has installed and opened the application successfully
● Main Flow:

1. Listener clicks on menu button from play screen
2. Listener then clicks on ‘List’ in the menu
3. Application redirects users to the list screen
4. Listener finds station they want to view by name
5. Listener clicks on station name
6. Application displays station information

● Alternate Flow:
*None

6.3.5: Use Case 6: Filter Stations in Application
● Primary Actor: Listener
● Secondary Actor: Phone
● Precondition: Listener has installed and opened the application successfully
● Main Flow:

1. Listener clicks on menu button from play screen
2. Listener then clicks on ‘Setup’ in the menu
3. Application redirects users to the setup screen
4. Listener clicks on any option to filter stations specifically by that type
5. Application display that specific type’s options to filter by
6. Listener selects filter options they want to filter by
7. Listener clicks ‘Done’ to have those filter options applied
8. Application loads stations to radio that were selected in filter

● Alternate Flow:
7a. Listener clicks ‘Cancel’ to not have those filter options applied

6.3.6: Use Case 7: Direct to Submit a Station
● Primary Actor: Listener
● Secondary Actor: Phone
● Precondition: Listener has installed and opened the application successfully
● Main Flow:

1. Listener clicks on menu button from play screen
2. Listener clicks ‘Suggest a Station’
3. Listener is redirected to mobile web browser

● Alternate Flow:
*None

6.3.7: Use Case 8: Login to Web Server / Website
● Primary Actor: Admin
● Secondary Actor: Web server
● Precondition: Website is loaded
● Main Flow:

1. Admin enters in email and password information
2. Web server gets admin information
3. Web server validates admin information
4. Web server returns session key and id
5. Admin is redirected to the select database screen
6. Admin selects ‘Midwest Radio’

● Alternate Flow:
1a. Admin clicks ‘Forget Password’

1a.1. Admin puts in email
1a.2. Admin opens email link
1a.3. Admin types in password two times
1a.4. Webserver validates admin information
1a.5. Web Server returns session key an id
1a.6. Admin is redirected to the select database screen
1a.7. Admin Selects ‘Midwest Radio’

6.3.8: Use Case 9: Add a Station
● Primary Actor: Admin
● Secondary Actor: Web Server
● Precondition: Successfully logged in with credentials
● Main Flow:

1. Admin clicks ‘Add Station’
2. Application displays a table to add station information
3. Admin enters station information
4. Admin clicks ‘Activate’ to activate station
5. Web server adds station

● Alternate Flow:
*None

6.3.9: Use Case 10: Create New User for Backend
● Primary Actor: Web Server
● Secondary Actor: Admin
● Precondition: Admin goes to website and logins with credentials
● Main Flow:

1. Admin clicks on ‘Manage Users’
2. Admin clicks on ‘Create New User’
3. Admin enters in email and password
4. Web server compares hash password and email to database to see if there is

a user that matches it
5. Web server hashes password
6. Web server stores credentials
7. Web server redirects admin to admin panel

● Alternate Flow:
2a. Web server returns error when hash password and email doesn’t match
database

6.3.10: Use Case 11: Load Application
● Primary Actor: Listener
● Secondary Actor: Web server
● Precondition: Application is installed on the phone
● Main Flow:

1. Listener opens application
2. Phone makes load request
3. Application loads all data from the web server
4. Application will load the radio screen

5. Pop up will appear letting the listener know that they can flip to landscape
mode.

● Alternate Flow:
2a. Application fails to load data from the web server

2a.1. Application displays a no internet message

6.3.2: Use Case Sequence Diagrams

Figure 12: Sequence Diagram for 3.3.0: Assigning Presets

Assigning the presets happens after a listener has a station currently selected on their device.

On the device, there are buttons 1 through 6 listed out. The user can long hold press any button
and that will assign that current station to that specific preset spot.

Figure 13: Sequence Diagram for 3.3.1: Save Preset Bank

Storing Preset Banks is storing the all the stations to the phone’s memory to be pulled up later
on. As previously mentioned above, users will have the ability to save a station to a preset spot.

After a user has stored what they want, they can click the menu button. The listener will then
click ‘Save’ and the lists of presets banks will appear. If the user clicks ‘New’, then a pop up will
appear with a spot for entering a name. After they click save, the phone will save all the preset
spots to that specific preset bank. The application will then determine which stations that were

saved are new and are not in any other preset bank. After that, the application will make a
network request to the webserver will those station ids.

Figure 14: Sequence Diagram for 3.3.1: Save Preset Bank Alternate Flow

This is the alternative flow for saving a preset bank. All of the steps are the same, expect the
user has the option to cancel their preset bank. The phone will cancel that process and go back

to showing all of the preset banks.

Figure 15: Sequence Diagram for 3.3.1: Save Preset Bank Alternate Flow

This is an alternative flow for saving the preset bank. Instead of a listener clicking on the ‘New’

button, the user can click any of preset banks that are listed to save over them. Again, the
application will save that to the application’s memory plus will identify the unique stations and

will send out the network request to the web server.

Figure 16: Sequence Diagram for 3.3.2: Delete Preset Bank

Once a user has stored a couple of preset banks to their phone, they will be able to delete them.

The user will first click on the menu button, followed by the ‘save’ button to show all of the
preset banks. The user can then press delete button which is located at the bottom of the
screen. The application will then show checkboxes next to each of the preset banks. The
listener can click on any or all of the preset banks and then press the ‘Delete’ button. The

application will produce a warning message. Once the listener confirms again, the preset banks
will be deleted from the Application’s memory.

Figure 17: Sequence Diagram for 3.3.2: Delete Preset Bank Alternate Flow

Again, this will follow the same flow as the previous user diagram. After the check boxes are

shown on the left hand side of the screen, and the user clicks on ‘Cancel’, then it will remove the
checkboxes on the left side of the screen.

Figure 18: Sequence Diagram for 3.3.2: Delete Preset Bank Alternate Flow

Following the save steps as above, after the listener clicks on the delete button, the checkboxes

will appear next to the preset banks. After the user has selected 1 or more, and then presses
‘Delete’, a warning message will appear. The user can click on cancel and it will remove the

checkboxes showing on the save screen.

Figure 19: Sequence Diagram for 3.3.3: Listen to Station

Once the application has been loaded on the phone, the user can click on the ‘Play’ button on

the selected station. The application will make many networks call out to that station’s
respective stream and will try to connect. One the connection has been made, it will return the

audio stream of the station.

Figure 20: Sequence Diagram for 3.3.3: Listen to Station Alternate Flow

Same steps as the above user diagram. If there is an issue during the process of trying to
connect to the station’s steam, the application will time out and display an error to the user

explaining the issue.

Figure 21: Sequence Diagram for 3.3.4: Find Stations

A user can find different stations that were loaded from the web server. The listener can click on
the menu button, this will list out the menu options. Next, user will click on ‘List’. This will show
the list of stations that have been loaded. The listener can then click on a specific station and

that will show all the station information associated with it.

Figure 22: Sequence Diagram for 3.3.5: Filter Stations in Application

The listener can can create their own scan list that will go over the stations they they have an
interest in. The user will first click on the menu button followed by the setup button from the

menu options. The listener then click on the filter type of their choice and then it will show all the
specific criteria associated with that filter. After the listener has chosen all they want, they can

click done. The application will then sort all of the station that fit that criteria and display the list.

Figure 23: Sequence Diagram for 3.3.5: Filter Stations in Application Alternate Flow

This alternate flow will follow the same steps as the above use case. This diagram shows that
during the picking of filters, the listener can click on the cancel button and that will remove the

pop up showing the setup screen.

Figure 24: Sequence Diagram for 3.3.6: Direct to Submit a Station

One unique aspect to this application is that users can submit a station that could be added to
the database in the near future. The user will first click on the menu button and will display all
the menu options. The listener will then choose the ‘Suggest A Station.’ The application will

redirect to a specific URL on the mobile web browser that the phone has.

Figure 25: Sequence Diagram for 3.3.7: Login to Web Server / Website

The Admin is responsible for maintaining the database for these stations. It is critically that it is
secure. The admin will go to a admin panel URL and put in their email address along with their

password. This will make a network request to the web server. The server will validate this
information and return the session keys and will be redirected to the select a database screen.

Figure 26: Sequence Diagram for 3.3.7: Login to Web Server / Website Alternate Flow

There is a Password request process for admin who may have forgot their password which is

also an alternative flow for logging in. First, the admin will click on the “Forget Password” button
and they will be redirected to a web page to insert their email. After the email has been entered,
it is sent to the web server where it will verify that email address and will send an email to that
person. The admin can then open it up and type their password twice to confirm it. After the

user click ‘Submit’, it is sent to the web browser where the token is validated and the passwords
will be updated in a hash form. This will also return session keys and ids to the admin. It will

then redirect the user to the Database selection screen.

Figure 27: Sequence Diagram for 3.3.8: Add Station to Database

One of the features for an admin is adding stations to the database. After the admin has

successfully logged in, they can click on ‘Add Station’ and a row in a table will appear. The
admin then inserts all the stations information and clicks the activate station button. The web

server will then validate that information and will add that station to the database.

Figure 28: Sequence Diagram for 3.3.9: Create New User for Backend

A current admin will have the opportunity to add more admins to the site. First, the user will click
on ‘Manage Users.’ This will return all the users that the database has. The admin can then click
on ‘Create New User’ and a box will appear to add in their credential information. The server will
collect this information and make sure that user has not already been created. It will then store a

hash of the password and then store that information. After this has been completed, it will
return the user back to the admin panel.

Figure 29: Sequence Diagram for 3.3.9: Create New User for Backend Alternate Flow

Following all the steps as the previous use case for 3.3.9. If the email that the current admin has
entered matches an email that is already in the database, the web server will send back an error

message to the user letting them know the user can not be inserted.

Figure 30: Sequence Diagram for 3.3.10: Load Application

The first step to the Listener completing any other use case first lies with getting the application
running. Once the user has opened the application, the application will make a call to the web
server to load in the Station Information. The web server will return a large object containing all

the information. The Application will process it and display the radio screen and will come with a
pop up letting the user know that they can turn their device sideways to view in landscape.

Figure 31: Sequence Diagram for 3.3.10: Load Application Alternate Flow

Following the same steps as above use case 3.3.10. If the application loads, it will make the

request to the web server. The web server might be down or the phone might not be connected
to Internet. Therefore, the application will still display an error message to the user letting them

know the problem.

6.4: Domain Modeling

6.4.1: Entity Relationships

 Admin Client Station Preset Banks Categories

Admin Manages

Client Listens to Manages selects

Station Managed by Listened by Stored in Filtered

Preset Banks Managed by Stores

Categories Selected by Filtered By

Figure 32: Entity Relationship Diagram

The above shows how the entities are connected to one another. It can be read “Row title” (is)
“cell action” “column title”, e.g. Station is managed by Admin, Preset Banks stores Station, etc.

6.4.2: Class Diagram

Figure 33: UML Class Diagram

This UML Class Diagram explains the relationships between each of the major roles in our
application. For example the admin and stations relationship, you can see that one to many

admin can manage many stations. Another example could be the relationship between category
and station. One to many stations are filtered by one to many categories.

6.5: Traceability

6.5.1: Case Requirements Matrix

Figure 34: Mapping of use cases to requirements

Above, you can see how the use cases and requirements match up. Some of the requirements
match up with the column titled ‘later iteration’. This is because our project has a great amount
of use cases, so in order to keep milestone to a reasonable amount we decided to show some
of the more important use cases. The other use cases have been created, just not shown here.
If we had all of our use cases wrote out here, then all of the requirements would be mapped up

to a use case.

6.5.2: Requirements - Dependency Matrix

Figure 35: Requirements Dependency Matrix for Application

Figure 36: Requirements Dependency Matrix for Admin Panel

For Figure 35 and Figure 36, we show how each requirement depends on another requirement
being completed first. For example in Figure 36, you can see 1.1.8.2 depends on 1.1.8.1 being

completed first. That is because the admin will have to be prompted to login to get into the
admin panel before they are sent to the home screen where they can select the Midwest

database.

7.0: Technical Summary
For this project, our teams goal is to produce the admin panel, and two mobile applications for
both iOS and Android.

7.1: iOS Considerations
According to our Non Functional Requirement of 1.2.1, iOS will be able to run at iOS 9.
The current version of iOS is currently at 11.1.2. However, looking at the breakdown of
current configurations on devices, iOS 9.0 is still used in nearly 8% of all current iPhones
and iPads.

Currently, we are developing the iOS Application in the latest version of XCode. This IDE
allows us to test the phones on different devices including iPhones and iPads as well as
testing out different versions of the OS.

7.2: Android Considerations.
Similar to above, according to our Non Functional Requirement 1.2.1, Android will be
able to run at Android 4.4. When looking at the breakdown for the Android system, there
is currently 14.5% of users that are using this version.

The current IDE of Android also allows us to test our project on different phones as well
as different operating system. It is important to note that we are using a specific software

packages that must meet API 16 and above in order for it to work. By staying at API 19
with Android 4.4, we have covered this requirement

7.2: Conclusion for Milestone #2
In conclusion, we have not made any major changes to our requirements, but we have changed
our development language. We began developing in React Native, which would have allowed
us to build apps for both platforms with only one code base. However, because of the trouble
we had with testing capabilities and building proof of concept, we decided to instead build two
separate native applications. Even so, we are still on track to meet or exceed all of our goals for
the application, backend, admin panel, and public facing site for the project. For this milestone,
we have completed a use case diagram, dependency matrix, traceability matrix, and many more
diagrams. With all this work, we are confident in the background of our project and how it shall
all fit together. This has helped escalate our project progress forward. In meeting with the client,
he has expressed his excitement about the project and its possibilities.
__

8.0: User Interface Design

8.1 Mobile Applications Designs

Figure 37

Here you can see the navigation through the pages of the app. It opens to the radio screen. The
menu can be opened from the icon in the top right hand corner. In the menu you can navigate to

the list screen, which lists all the available stations, the radio screen, or be redirected to the
Middletown Music website on the phones browser. The only difference between iOS and

Android is that Android lacks the back button in the top left hand corner of the screen since this
functionality is already built in to the phone.

Figure 38

Here you see the same navigation as in Figure 2, but in the landscape view.

8.2 Admin Panel Designs

Figure 39

This is the admin view for all the current active stations on the site. If you click on any of the
table headings, it will sort the table in numerical or alphabetical order by that column. You can
also click edit to edit the row, click pending to make the station go to pending, or click delete to

delete the station from the app.

Figure 40

Here is the admin view for all the pending stations on the site. If you click on any of the table
headings, it will sort the table in numerical or alphabetical order by that column. You can also
click edit to edit the row, click activate to make the station go to active, or click delete to delete

the station from the app.

Figure 41

This shows the admin view for all the current deleted stations on the site. If you click on any of
the table headings, it will sort the table in numerical or alphabetical order by that column. You
can also click edit to edit the row, click pending or activate in the move column to make the

station go to pending or active, or click delete to delete the station from the app forever.

9.0: Database Design

Figure 42

Structure View for the radio stations. It contains all the information on the stations, including

their unique ids, radio frequency, full station name, abbreviated station name, location, slogan,

active/pending/deleted status, type of station (college, commercial, etc.), genre, streaming url,
and whether it was user entered or not.

Figure 43

Structure View for the popular votes table. This stores the station id and the number of times it

has been saved to a preset by unique users.

10.0: Software Architecture

10.1: Architecture Overview

Figure 44

This figure shows a high level view of how each our components fit together. Below is an in

depth explanation of each smaller component.

10.1.1: Mobile Applications
The iOS and Android apps are different code bases, but are basically the same in both
appearance and functionality. The iOS app will function on iPhones operating on version 10.0
and above, and the Android app will function on phones operating on version 4.4 and above.
They both interact with the web server through the backend by requesting all the information
about the stations on launch. When a user saves a new station to their presets, they send a
request to add a popular vote to that station. They will also redirect users to the submission and
report online forms through the menu.

10.1.2: Web Server
The webserver is the backend to all three sides of our product: mobile applications, admin
panel, and submission & report form. The web server handles all the functionality of adding,
editing, and deleting stations from the database. There are specific Application Program
Interface (API) for each specific product.

10.1.3: Admin Panel
The admin panel is a website where users with login credentials can add, edit, delete, and
update the stations that are stored on the database for the applications. The data will then get
sent to the web server where it will handle all actions. An admin user will also be able to see the
popular stations that are stored in the database.

10.1.4: Submission & Report Forms
The submission and report forms are forms where users of the mobile apps can go to submit a
station they would like to see on the mobile apps or report an issue with a station already on the
applications. The information submitted through these forms gets sent to the admin panel where
a user with login credentials can view the submissions.

10.2: Detailed Design

10.2.1: Backend

Figure 45

 This figure is the backend class diagram. It is very simple with just a Station and Votes Object.

● Station: This class responsibility is to manage all the information for each station. There

are alot of different attributes that are associated with including stream, frequency, city,
etc.

● Votes: This class responsibility is to keep track of each stations amount of votes that the
user saves as a preset on the phone.

10.2.2: iOS App

Figure 46

Here you see the class diagram within its containing package for the iOS application. In this

case, because our apps are in different code bases, their class diagrams are different. Android
is listed below.

● Station: This class is responsible for holding all of a station’s data.
● StreamPlayer: This class is responsible for playing and controlling the radio stream.
● StationTableViewCell: This class is responsible for the display of each station in the

database and for sending data about that station to the player.
● StaitonListViewController: This class is responsible for displaying the list of Stations as

StationTableViewCells

● MidwestBaseViewController: This class is responsible for displaying and controlling the
menu

● RadioPlayerViewController: This class is responsible for the GUI of the radio and
sending the user’s interactions to the player

10.2.3: Android App

Figure 47

Here you see the class diagram within its containing package for the Android application, which,

as noted above, is different from that of the iOS application because of the difference in code
bases.

● Station: This Class is responsible for holding all the station data that is needed for the

application.
● MainActivity: The MainActivity class is responsible for all the fragments, and facilitates

the switching of them. It also contains the menu, which is a DrawerLayout.
● RadioFragment: This class facilitates the radio page, and all its associated functionality.

It additionally binds an AudioService to play audio on the phone.

● LoadingFragment: The LoadingFragment is responsible for loading the application data
on app load, and also animates the loading animation while waiting. It additionally gives
the user feedback if no internet is available.

● HttpClient: The HttpClient is in charge of making all the various http requests that the
application will need. It also contains a JSONObject to return with requested data.

● Requests: This object is used to make http requests for the application, utilizing the
HTTPClient. It stores the url needed, and invokes the various HttpCilent methods as
needed.

● AudioPlayer: The AudioPlayer class handles the various ExoMediaPlayer methods in
order to control audio. It additionally will store the current Stream and the current state of
the player.

● AudioService: This class acts as a control to the AudioPlayer, and creates a wifiLock to
keep the stream alive.

10.2.4 Web Admin Front End

Figure 48

This is the class diagram for the front end of the admin panel. The main object is the Station and

then it connects to each of them with the View Controllers.

● ActiveStationsController: This controller controls the displaying and filtering of active
stations.

● PendingStationsController: This controller controls the functionality for pending stations,
and also the filtering functionality. The user has the functionality to change to active or
deleted.

● DeletedStationsController: This controller manages the displaying of deleted stations. It
can control if he wants to move a station to pending or deleted.

● Station: This class is responsible for holding all the station information.
● ReportController: The ReportController handles the submission of report forms for

stations that have issues.
● PopularStationsController: This class is responsible for keeping track of the popular

count in the database. It also has additional validation checking to ensure valid streams
are added.

● SubmitStationViewController: The SubmitStationViewController handles the form data
for submitting a new station.

10.3: Detailed Major Use Cases

10.3.1: Mobile Application Use Cases

10.3.1.1: Use Case 1: Assign Presets
● Primary Actor: Listener
● Secondary Actor: Phone
● Precondition: Listener has installed and opened the application radio successfully or

selected one of their saved preset banks
● Main Flow:

1. Listener selects to a station
2. Listener long presses one of the spots in the preset area to assign station

● Alternate Flow:
*None

Figure 49

Use case diagram for 5.3.1.1: Use Case 1: Assign Presets

10.3.1.2: Use Case 2: Listen to Station
● Primary Actor: Listener
● Secondary Actor: Phone
● Precondition: Listener has installed and opened the application successfully
● Main Flow:

1. Listener clicks the play button on the radio screen
2. First station in the list will begin to playing

● Alternate Flow:
2a. Listener lost connection to internet and station didn’t begin to play

Figure 50

Use case diagram for 5.3.1.2: Use Case 2: Listen to Station

10.3.1.3: Use Case 3: Find Stations
● Primary Actor: Listener
● Secondary Actor: Phone
● Precondition: Listener has installed and opened the application successfully
● Main Flow:

1. Listener clicks on menu button from play screen
2. Listener then clicks on ‘List’ in the menu
3. Application redirects users to the list screen
4. Listener finds station they want to view by name
5. Listener clicks on station name
6. Application displays station information

● Alternate Flow:
*None

Figure 51

Use case diagram for 5.3.1.3: Use Case 3: Find Stations

10.3.1.4: Use Case 4: Direct to Submit a Station
● Primary Actor: Listener
● Secondary Actor: Phone
● Precondition: Listener has installed and opened the application successfully
● Main Flow:

1. Listener clicks on menu button from play screen
2. Listener clicks ‘Suggest a Station’
3. Listener is redirected to mobile web browser

● Alternate Flow:
*None

Figure 52

Use case diagram for 5.3.1.4: Use Case 4: Direct to Submit a Station

10.3.1.5: Use Case 5: Load Application
● Primary Actor: Listener
● Secondary Actor: Web server
● Precondition: Application is installed on the phone
● Main Flow:

1. Listener opens application
2. Phone makes load request
3. Application loads all data from the web server
4. Application will load the radio screen
5. Pop up will appear letting the listener know that they can flip to landscape

mode.
● Alternate Flow:

2a. Application fails to load data from the web server and displays a no internet
message

Figure 53

Use case diagram for 5.3.1.5: Use Case 5: Load Application

10.3.2: Admin Panel Use Cases

10.3.2.1: Use Case 6: Login to Web Server / Website
● Primary Actor: Admin
● Secondary Actor: Web server
● Precondition: Website is loaded
● Main Flow:

1. Admin enters in email and password information
2. Web server gets admin information
3. Web server validates admin information
4. Web server returns session key and id
5. Admin is redirected to the select database screen
6. Admin selects ‘Midwest Radio’

● Alternate Flow:
3a. Application fails to validate admin information and displays error

Figure 54

Use case diagram for 5.3.2.1: Use Case 6: Login to Web Server / Website

10.3.2.2: Use Case 7: Add a Station
● Primary Actor: Admin
● Secondary Actor: Web Server
● Precondition: Successfully logged in with credentials
● Main Flow:

1. Admin clicks ‘Add Station’
2. Application displays a table to add station information
3. Admin enters station information
4. Admin clicks ‘Activate’ to activate station
5. Web server adds station

● Alternate Flow:
*None

Figure 55

Use case diagram for 5.3.2.2: Use Case 7: Add a Station

10.3.2.3: Use Case 8: Create New User for Backend
● Primary Actor: Web Server
● Secondary Actor: Admin
● Precondition: Admin goes to website and logins with credentials
● Main Flow:

1. Admin clicks on ‘Manage Users’
2. Admin clicks on ‘Create New User’

3. Admin enters in email and password
4. Web server compares hash password and email to database to see if there is

a user that matches it
5. Web server hashes password
6. Web server stores credentials
7. Web server redirects admin to admin panel

● Alternate Flow:
2a. Web server returns error when hash password and email doesn’t match
database

Figure 56

Use case diagram for 5.3.2.3: Use Case 8: Create New User for Backend

11.0: Future Considerations for Milestone #3
We have already released our first version of the app to the stores. So, moving forward, we plan
to implement more features and release a second version at the very least. We will also spend
time finding and fixing bugs so our app functions the best that it can. Lastly, we will be creating
any documents/tutorials that our client and/or future developers will need for the apps and
admin panel when we are gone. This seems very possible with the removal of what our client
viewed as unnecessary features. We are proud of what we’ve achieved thus far, but will
continue to push to the end and create the best possible products for our client and the
application users.
__

12.0 Progress Update for Milestone #4

12.1 Progress Update
Our final milestone is complete. It was another seven weeks of hard work for the team. We are
happy to announce that all work that was scheduled to be complete is complete.

12.2 GANTT Chart

Figure 57

Here is the latest version of our GANTT Chart. We were able to complete all assigned tasks

within our timeline. The red lines represent features that are no longer valid.

13.0 Testing / Validation

13.1 iOS Development

13.1.1: Unit Testing
Below are the unit test cases for the iOS application. The following test cases ensure
that critical components of the application that receive dynamic input are correct.

● Station list parsing
● Station Saving

Test # Test Case Condition Expected Results Pass
/ Fail

1 Make station list
full

Active stations JSON Array
supplied to StreamPlayer

StreamPlayer returns an
ArrayList, where each

Pass

object is of type
Station.class

2 Save new Station
to preset

Button and station ID that is
not in local storage is

supplied to the
changePresetFunction

Station ID is saved to
local storage.

Pass

13.1.2: Functional Testing
Below is a table of the test cases completed for the iOS application. If it had a functional
requirement(FR) that went with it, it is labeled under the test number. If there is a
functional requirement that is not shown below, it is because that requirement has been
removed.

Test # Test Case Condition Expected Results Pass
/ Fail

1
FR
2.2.1.1

View menu options Click the hamburger button in
the top hand of the screen

Displays menu options Pass

2 Navigate to the ‘All
Stations’ screen
from the menu

Click the hamburger button in
the top hand of the screen
then click ‘All Stations’

Displays the ‘All Stations’
screen, with the stations in
alphabetical order

Pass

3
FR
2.2.1.1.5

Navigate to the
‘Middletown Music’
website from the
menu

Click the hamburger button in
the top hand of the screen
then click ‘Middletown Music’

Displays the ‘Middletown
Music’ website in the web
browser

Pass

4
FR
2.2.1.1.6

Navigate to the
‘Suggest A Station’
screen from the
menu

Click the hamburger button in
the top right hand of the
screen then click ‘Suggest A
Station’

Displays ‘Suggest A Station’
in the web browser

Pass

5 Navigate to the
‘Report an Issue’
screen from the
menu

Click the hamburger button in
the top hand of the screen
then click ‘Report An Issue’

Displays ‘Report An Issue’
in the web browser

Pass

6
FR
2.2.2.3

Change to next
station on the right

Click on the single arrow
button to the right

Radio changes to the next
station to the right

Pass

7
FR
2.2.2.3

Change to the next
station on the left

Click on the single arrow
button to the left

Radio changes to the next
station to the left

Pass

8
FR
2.2.2.2,
2.2.2.2.1

Scan through
stations to the right

Click on the double arrow
button to the right

Radio scans to the next
station to the right, stays for
5 seconds, and then scans
again to the right
continuously

Pass

9
FR
2.2.2.2,
2.2.2.2.1

Scan through
stations to the left

Click on the double arrow
button to the left

Radio scans to the next
station to the left, stays for 5
seconds, and then scans
again to the left
continuously

Pass

10 Stop scanning
through stations

Click any button on the radio
while scanning

Scanning stops and current
station continues playing

Pass

11
FR
2.2.2.4

Play a station Click ‘Play’ Plays the station currently in
the radio

Pass

12
FR
2.2.2.5

Stop a station Click ‘Stop’ Stops the station currently
in the radio

Pass

13
FR
2.2.2.6

Play a station from
the preset area

Click on one of the saved
preset stations

Begin playing the preset
station clicked on

Pass

14
FR
2.2.2.9

Save a station to
preset area

Long hold preset spot Station currently in radio
saves to that preset spot

Pass

15
FR
2.2.7.3

View station
information

On ‘All Stations’ screen, click
on one of the stations

Displays station information
and “Play this Station”
button in pop up

Pass

16 Make station
information
disappear

On ‘All Stations’ screen, click
out of the pop up (anywhere
else on the screen)

Remove station information
pop up

Pass

17 Play station chosen
from ‘All Stations’
screen

Click on one of the stations
and then click ‘Play this
Station’

Redirects user to radio
screen and begins playing
that station

Pass

18
FR
2.2.2.10,
2.2.7.4

Display helpful
information

Click on the question mark Displays helpful information
for that screen

Pass

13.1.3: Environment Testing

Device iOS
version

App Build Functional Tests

iPhone 7 Plus 11 Success All Pass

iPhone 7 11 Success All Pass

iPhone 6s 11 Success All Pass

iPhone 6s Plus 11 Success All Pass

iPhone 6 11 Success All Pass

iPhone 6 Plus 11 Success All Pass

iPhone SE 11 Success All Pass

iPhone 5s 11 Success All Pass

iPhone 6s 10 Success All Pass

iPhone 6s Plus 10 Success All Pass

iPhone 6 10 Success All Pass

iPhone 6 Plus 10 Success All Pass

iPhone SE 10 Success All Pass

iPhone 5s 10 Success All Pass

iPhone 5c 10 Success All Pass

iPhone 5 10 Success All Pass

13.2 Android Development

13.2.1: Unit Testing
Below are the unit test cases for the Android application. The following test cases ensure
that critical components of the application that receive dynamic input are correct. These
cases have been integrated into the build cycle via Gradle.

● Station list parsing
● Station Saving

Test # Test Case Condition Expected Results Pass
/ Fail

1 Make station list
full

Active stations JSON Array
supplied to factory

Factory returns an
ArrayList, where each

object is of type
Station.class

Pass

2 Make station list
partial

Active stations JSON Array
supplied to factory with

empty values

Factory returns an
ArrayList, where each

object is of type
Station.class

Pass

3 Save new Station
to preset

Button and station ID that is
not in local storage is

supplied to the
changePresetFunction

Station ID is saved to
local storage.

Pass

4 Re-save station
to preset

Button and station ID that is
in local storage is supplied

to the
changePresetFunction

Station ID is not saved to
local storage.

Pass

13.2.2: Functional Testing
Below is a table of the test cases completed for the Android application. If it had a
functional requirement(FR) that went with it, it is labeled under the test number. If there
is a functional requirement that is not shown below, it is because that requirement has
been removed.

Test # Test Case Condition Expected Results Pass
/ Fail

1
FR
2.2.1.1

View menu options Click the hamburger button in
the top hand of the screen

Displays menu options Pass

2 Navigate to the ‘All
Stations’ screen
from the menu

Click the hamburger button in
the top hand of the screen
then click ‘All Stations’

Displays the ‘All Stations’
screen in alphabetical order

Pass

3
FR
2.2.1.1.5

Navigate to the
‘Middletown Music’
website from the
menu

Click the hamburger button in
the top hand of the screen
then click ‘Middletown Music’

Displays the ‘Middletown
Music’ website in the web
browser

Pass

4
FR
2.2.1.1.6

Navigate to the
‘Suggest A Station’
screen from the
menu

Click the hamburger button in
the top right hand of the
screen then click ‘Suggest A
Station’

Displays ‘Suggest A Station’
in the web browser

Pass

5 Navigate to the
‘Report an Issue’
screen from the
menu

Click the hamburger button in
the top hand of the screen
then click ‘Report An Issue’

Displays ‘Report An Issue’
in the web browser

Pass

6
FR
2.2.2.3

Change to next
station on the right

Click on the single arrow
button to the right

Radio changes to the next
station to the right

Pass

7
FR
2.2.2.3

Change to the next
station on the left

Click on the single arrow
button to the left

Radio changes to the next
station to the left

Pass

8
FR
2.2.2.2,
2.2.2.2.1

Scan through
stations to the right

Click on the double arrow
button to the right

Radio scans to the next
station to the right, stays for
5 seconds, and then scans
again to the right
continuously

Pass

9
FR
2.2.2.2,
2.2.2.2.1

Scan through
stations to the left

Click on the double arrow
button to the left

Radio scans to the next
station to the left, stays for 5
seconds, and then scans
again to the left
continuously

Pass

10 Stop scanning
through stations

Click ‘Stop’ Scanning stops Pass

11
FR
2.2.2.4

Play a station Click ‘Play’ Plays the station currently in
the radio

Pass

12
FR
2.2.2.5

Stop a station Click ‘Stop’ Stops the station currently
in the radio

Pass

13
FR
2.2.2.6

Play a station from
the preset area

Click on one of the saved
preset stations

Begin playing the preset
station clicked on

Pass

14 Save a station to Long hold preset spot Station currently in radio Pass

FR
2.2.2.9

preset area saves to that preset spot

15
FR
2.2.7.3

View station
information

On ‘All Stations’ screen, click
on one of the stations

Displays station information
in modal

Pass

16 Make station
information
disappear

On ‘All Stations’ screen, click
the back button

Removed station
information modal

Pass

17 Play station chosen
from ‘All Stations’
screen

Click on one of the stations
and then click the ‘Play’
button

Redirects user to radio
screen and begins playing
that station

Pass

19
FR
2.2.2.10,
2.2.7.4

Display helpful
information

Click on the question mark Displays helpful information
for that screen

Pass

13.2.3: Environment Testing

Device API
version

Gradle Build Functional Tests

Galaxy Nexus 16 Success All Pass

Galaxy Nexus 19 Success All Pass

Galaxy Nexus 4 19 Success All Pass

Galaxy Nexus 5 23 Success All Pass

Galaxy Nexus 5 24 Success All Pass

Galaxy Nexus 6 25 Success All Pass

Galaxy Nexus 6 23 Success All Pass

Galaxy Nexus S 25 Success All Pass

Pixel 2 24 Success All Pass

Samsung Galaxy
S6

25 Success All Pass

Pixel 2 XL 27 Success All Pass

13.3 Front End Development

13.3.1: Functional Testing for Admin Panel
Below is a table of the test cases completed for the admin panel. If it had a functional
requirement(FR) that went with it, it was labeled under the test number. If there is a
functional requirement that is not shown below, it is because that requirement has been
removed.

Test # Test Case Condition Expected Results Pass
/ Fail

1
FR:
2.2.8.1,
2.2.8.2

Login to admin
panel

Enter valid email and
password and click ‘Login’

Redirects user to database
selection screen

Pass

2 New password sent
for valid email

Click ‘Forgot Password’, type
in valid email, and click ‘Reset
My Password’

Email sent to user with link
to reset their password

Pass

3 Add user to admin
panel

Click ‘New User’, type in user
information, and click ‘Save
New User’

Adds user to user table Pass

4 Delete user from
admin panel

Click ‘Delete’ next to user Deletes user from admin
panel

Pass

5 Make user the
admin

Click ‘Make Recipient’ next to
user

Makes user current admin
for the admin panel

Pass

6
FR:
2.2.8.3

Go to ‘Midwest
Radio’ admin panel

Enter in valid login credentials,
click ‘Login’, then click
‘Midwest Radio’

Redirects user to Midwest
Radio admin panel

Pass

7 Add a station Click ‘Add Station’, enter
station information, and click
‘Activate’

Adds station to the
application

Pass

8
FR:
2.2.8.4

Toggle filter options Click ‘Genre’, ‘Ownership’, or
‘Geographical’ once to open
and another time to close

Shows and unshows filter
options

Pass

9 Edit a station Click ‘Edit’, change the station
information, and click ‘Save’

Station information updated Pass

10 Toggle edit and
save buttons

Click ‘Edit’ to edit the station
and click ‘Save’ to update the

Toggles the button from
‘Edit’ to ‘Save’

Pass

station

11 Make station go
from active to
pending

Click ‘Pending’ Station goes to pending
stations list

Pass

12 Make station go
from active to
deleted

Click ‘Delete’ Station goes to deleted
stations list

Pass

13 Make station go
from pending to
active

Click ‘Activate’ Station goes to active
stations list

Pass

14 Make station go
from pending to
deleted

Click ‘Delete’ Station goes to deleted
stations list

Pass

15 Make station go
from deleted to
pending

Click ‘Pending’ Station goes to pending
stations list

Pass

16 Make station go
from deleted to
active

Click ‘Activate’ Station goes to active
stations list

Pass

17 Delete station
forever

Click ‘Delete’ Station gets deleted from
the database

Pass

18 Sort table Click on any of the table
headings

Table sorts stations
alphabetically by that
column

Pass

19 Change first station
shown in app

Select station and click ‘Save
First Station’

Station becomes first
station loaded on
applications

Pass

20
FR:
2.2.8.6

Download stations Click ‘All Stations Download’ Excel sheet of all the
stations downloads to
computer

Pass

13.3.2: Functional Testing for Public Website
Below is a table of the test cases completed for the public website. If it had a functional
requirement(FR) that went with it, it was labeled under the test number. If there is a
functional requirement that is not shown below, it is because that requirement has been
removed.

Test # Test Case Condition Expected Results Pass

/ Fail

1
FR:
2.2.9.1

View stations in
applications

Go to website Redirects user to website
showing all stations in
applications

Pass

2
FR:
2.2.9.2

Submit station for
application

Go to
http://willshare.com/cs495/Mid
westRadioPlayer/frontend/#/su
bmit, type in the station
information, and click ‘Submit’

Station information is sent
to the pending page in the
admin panel

Pass

3 Report an error
with a station

Go to
http://willshare.com/cs495/Mid
westRadioPlayer/frontend/#/re
port, type in the information
wrong with a station, and click
‘Report’

Email with information
reported is sent to admin

Pass

13.4 Backend Development / Server

13.4.1 Information
For the testing of the backend, a variety of test happened over the course of the
application mainly including API Unit test with PostMan.

Test # Test Case Condition Expected Results Pass
/ Fail

1 Login to Admin
Panel

Enter correct email or
password

Status: 200; Sessions
Variables should be
returned

Pass

2 Login to Admin
Panel

Enter incorrect email or
password

 Status: 400; Explaining no
user

Pass

3 Login to Admin
Panel

Missing Data Fields Status: 400; Explaining no
user

Pass

4 Password Reset Enter a valid email Status: 200; Explaining that
information has been sent.
Email should come through

Pass

5 Password Reset Enter a nonvalid email Status: 200; Explaining that
information has been sent.

Pass

6 Adding New User Adding correct information Status: 200; User Should be
returned

Pass

http://willshare.com/cs495/MidwestRadioPlayer/frontend/#/submit
http://willshare.com/cs495/MidwestRadioPlayer/frontend/#/submit
http://willshare.com/cs495/MidwestRadioPlayer/frontend/#/submit
http://willshare.com/cs495/MidwestRadioPlayer/frontend/#/report
http://willshare.com/cs495/MidwestRadioPlayer/frontend/#/report
http://willshare.com/cs495/MidwestRadioPlayer/frontend/#/report

7 Adding New User Missing some required
information

Status: 400; Explaining data
fields not all there

Pass

8 Deleting User Enter correct user ID Status: 200; User should
now be deleted

Pass

9 Deleting User Enter an invalid user ID Status: 400; Explaining data
fields are not correct

Pass

10 Adding Stations Entering all required
information

Status 200; Station should
be added

Pass

11 Adding Stations Entering not all required
information

Status 400; Explaining data
fields not all there

Pass

12 Adding User
Station

Entering all required
information

Status: 200; Station should
be added and the User
Entered parameter should
be set

Pass

12 Editing Stations Entering all the required
information

Status: 200; Station should
be updated with the current
information

Pass

13 Editing Stations Enter not all the required
information

Status: 400; Explaining data
fields not all there

Pass

14 Add Votes Enter Required information
with current data

Status: 200; Stations should
now have a plus one in the
vote

Pass

15 Add Votes Enter Required information but
not a valid station DI

Status: 400; Explaining data
fields not valid

Pass

16 Add Votes Enter not all required
information

Status: 400; Explaining data
fields not all there

Pass

17 Reporting Station Enter Required Information Status: 200; Information has
now been reported.

Pass

18 Reporting Station Enter Required Information Status: 400; Explaining data
fields not all there

Pass

19 Getting Application
Data

GET Request Information should be
returned in the correct
JSON format

Pass

20 Getting Application
Data

POST Request Status: 400; Information
should not be returned.

Pass

14.0 Documentation

14.1 iOS / Android User Manual

14.1.1 Tutorials / Documentation

Play Screen
1. Click here for the Main Menu
2. Click here for the help text for that

screen
3. Here is all the radio station

information is stored.
4. Click here for the website of the

current listed station.
5. Click on the “Play” button to play

the current station that is listed.
6. Click on the “Stop” button to stop

the radio.
7. These buttons control the scan

feature. The radio will stay on the
station for 5 seconds and then
move on.

8. The forward and back buttons let
the user browse, but does not
play the station until the play
button is hit

9. This boxed area is the presets. A
user can press and hold to set the
current radio station down.

Main Menu

10. Click here to see a list of stations
11. Click here to see general

information about the app
12. Click here to go to the Middletown

Music Website
13. Click here to submit a station

through the webpage
14. Click here to report a station that

the data is not correct or a bad
stream

Radio Stations
15. Here is a list of stations that are

currently loaded into the app, in
alphabetical order.. Clicking on
the station will have the Radio
modal load this station into the
radio, and begin playing.

Radio Module
16. This modal will show all the

station information. You can click
on the play button and that will
redirect to the radio screen.

14.1.2 Read Me Android
Dependencies: MidwestRadio/app/build.gradle

/Audio:
 The Audio files AudioService.java and AudioPlayer.java are used to facilitate the
App's use of ExoPlayer, and utilize a service architecture.
 The audio player is responsible for managing the AudioPlayer instance, and
managing a wifilock for the service.

/fragments:
 Each java file within the fragments folder contains an instance subclassed from
android.support.v4.app.DialogFragment or
 android.support.v4.app.Fragment. each of these files is used to control the
corresponding xml view found in app/src/main/res/layout
 or layout-land if applicable. These files depend upon distinct util classes, models,
Audio, and the network.
 All fragments are initialized in the MainActivity class, and managed with
android.support.v4.app.FragmentManager;

/models:
 This folder contains the crucial Station Object, along with it's factory to facilitate
instantiation. The Station Object itself is parcelable to be used
 within Android Bundles and contains redundant getter and setter methods that are
required for Jackson json mapping. The StationList Factory itself
 utilizes com.fasterxml.jackson.databind.ObjectMapper to map the json into an
ArrayList of Station Objects. It is crucial that this Station object
 contain every attribute received from the backend with the redundant getter and setter
methods. Adding new attributes to the Station model
 on the backend without updating the Station Object here could be detrimental to the
application.

/network:
 This folder manages the HTTP requests using a standard HTTP client, that is used in
LoadingFragement and RadioFragment. Requests made by this
 client expect an HTTP response code of 200 in order for the callback to be considered
successful. Requests.java contains an example of the expected
 JSON format for the station data.

/utils:
 The Utils folder contains various front end components and callbacks that are
necessary for the App, especially in the xml fragment files.

Deployment:

To redeploy for Android, the APK will need to be signed with the keystore file
found on the google play developer console. The version name and version code will
need to be incremented in /app/build.gradle before re-signing the apk.

https://github.com/yourkingnico/midwest_radio_android/commit/2f0ede532a43413adb836fabbadb11d6519706df#diff-6b68621790e716982360d8fbf61e4dcd

14.1.3 Read Me iOS

LoadingScreenViewController.swift : contains the animation for the loading
screen and makes the initial get request

MidwestBaseViewController.swift : parent class to control opening menu and
help buttons\

NetworkRequestor.swift : contains all the network request code

RadioPlayerViewController.swift : the controller of the radio page

Station.swift : objectified station from the json

StationListViewController.swift : the controller of the station list page

StreamPlayer.swift : controls the audio streamer

14.2 Front End Development User Manual

14.2.1 Login Tutorials

1. Go to
http://willshare.c
om/cs495/admin
/frontend/#/ and
login with your
email and
password. Then
click, ‘Login’.

http://willshare.com/cs495/admin/frontend/#/
http://willshare.com/cs495/admin/frontend/#/
http://willshare.com/cs495/admin/frontend/#/

2. If you have
forgotten your
password click
‘Forgot
Password’ on
the login page. It
will redirect you
to the page
shown on the
right. Type in
your email and
click ‘Reset My
Password’. You
will then receive
an email with
the new
password for
your account.
And you can go
back to the login
screen and login
with your email
address and the
new password.

3. Once logged in,
you can select
‘Manage Users’
in the upper
right hand
corner to
manage users
or select
‘Midwest Radio’
to go to the
admin panel.

14.3.2 Create New User Tutorials

1. Go to
http://willshare.c
om/cs495/admin
/frontend/#/ and
login with your
email and
password. Then
click, ‘Login’.

2. Once logged in,
select ‘Manage
Users’ in the
upper right hand
corner.

3. Next, click ‘New
User’ in the
bottom left hand
corner of the
screen.

http://willshare.com/cs495/admin/frontend/#/
http://willshare.com/cs495/admin/frontend/#/
http://willshare.com/cs495/admin/frontend/#/

4. Then a table will
pop up at the
bottom where
you can type in
the user’s email
and password.
Lastly, click
‘Save New User’
and that user
will be added to
the list.

14.3.3 Admin Panel Tutorials

The admin panel is
where you can manage
stations. The photo to
the right shows you the
active stations and all
their information.

The navigation on the
left of the screen, is
how you navigate the
middletown admin
panel. You can go back
to the admin panel
select screen, all
stations screen, popular
stations screen, and
first station screen.

The status area at the
top of the screen tells
you what stations you
are currently viewing.
The options are active,
pending, and deleted.
You can move stations
between each status by
looking at the last two
columns and clicking
the respective button.

Example below.

If you would like to
remove a station from
the app and make it
pending, you go to the
active station page and
find that station in the
table. Then select the
‘pending’ button. That
station will then go to
the pending stations
and will be removed
from the apps.

If you would like to
remove a station from
the app and delete it,
you go to the active
station page and find
the station in the table.
Then select the ‘delete’
button. That station will
then go to the deleted
stations and will be
removed from the apps.

If you would like to edit
a stations
information, find the
station in the table and
then click the ‘Edit’
button. Once you have
edited the information,
click the ‘Save’ button.
(The save button is in
the same place the edit
button was)

In order to filter
stations, you click on
‘Genre’, ‘Ownership’, or
‘Geography’ and select
which criteria you would
like to filter the below
stations by.

If you would like to
download all the
stations, you can scroll
to the bottom of the
active stations page.
There you will see a
button that says ‘All
Stations Download’.
Click that button and all
stations will download
into an excel sheet.

If you would like to add
a station to the apps,
you first click the button
on the right side of the
screen that says ‘Add
Station’. Then a table
will pop up (like the
screen to the right)
where you can type in
the station information.
Once you have the
information typed in,
select the ‘Activate’
button and it will make
the station active.

If you would like to view
which stations are
popular, select
‘Popular’ from the
navigation on the left.

If you would like to
change which station
shows up first when
the app is loaded,
select ‘First’ from the
navigation on the left.
Then select which
station you would like to
show first and click
‘Save First Station’

14.3 Backend Development / Server User Manual
The server is the heart of the application. It controls all three aspects to the software, the public
website, the admin panel, and both applications. It is critical that the server stays up and
running, but also no updates or change the the internal configs up the server. If changes are
needed, take extreme caution. The changes that could happen, might break the server and
therefore all parts of the application.

14.3.1 End Points

14.3.2.1 GetApplicationData.php
This GET endpoints gets all the information that is needed for the mobile
applications.

14.3.2.2 AddVote.php
This is a POST endpoint that will submit a station to the voting database.
Required field is the “station_id”.

14.3.2.3 AddStation.php
POST endpoint that lets the admin add stations to the database. It will take in all
the different criteria for a station including: short_name, long_name, frequency,
city, state, slogan, type, genre, stream, website, active.

14.3.2.4 GetPopular.php
GET endpoint that is used for the voting page on the admin page. It will return an
array of all the stations that have votes.

14.3.2.5 UpdateStation.php
POST endpoint that will take in all the required fields from the station attribute
and update them accordingly.

14.3.2.6 UEAddStation.php
POST endpoint that the user has to submit a station into the database. The
required fields are the same as the normal station, expect the user can not insert
the type, genre, and website. The station will be sent to the pending stations
page.

14.3.2.7 ReportStation.php
POST endpoint that the users has to report a station has wrong information. The
information that is collect is the long_name, broken, and comment. This
information would then be emailed to the contacted users in the system.

15.0 Deployment / Handover plan
https://github.com/middletownradio is where all the cleaned out repo are stored. The real
production copies are given directly to Dr. Willey through download.

15.1 iOS Development

15.1.1 Current Configuration
The iOS Application has been updated with the latest version on the Apple’s App Store
with Dr. Willey’s account. Users have already started to download the application.

15.1.2 Reproduce
In order to reproduce for a another region, the items that need to change are the URLs
to the database, the app logo, and adding an application to the App Store. It is critical
that the backend and database same in similar structure in order for the application
being able to work with new data.

https://github.com/middletownradio

15.2 Android Development

15.2.1 Current Configurations
The Android Application has been updated with the latest version on the Google Play
Store with Dr. Willey’s account. Users have already started to download the application.
You will need the Android Key in order to submit it to the Google Play Store.

15.2.2 Reproduce
In order to reproduce this application for another region, the items that need to change
are the URLs to the database, the app logo, and adding an application to the Google
Play Store. It is critical that the backend and database use identical formats in order for
the application to work correctly. Included in the source code are explicit examples on
conforming to the application’s format.

15.3 Front End Development

15.3.1 Current Configurations
The front end of the admin and the public websites are already live and on the server
that Dr. Willey has supplied to us. All of the information is working and coming in
correctly from the database that is also on the server.

15.3.2 Reproduce
In order to reproduce, the admin will need to create a new folder inside the server and
load in all of the development files that make up the current admin panel. Then, the
admin will need to go into the factories controller and change out the current backend
URLs to the new backend URLs for the application. After that is complete, the front end
should populate with the new data from another region.

15.4 Backend development

15.4.1 Current Configurations
 The backend of the project is written all in PHP version 5.3. Therefore, the program
might fail to work if that version is updated because of the now deprecated methods that
are in its current verison. Everything has been uploaded to the iPower server.

15.4.2 Reproduce
In order to reproduce the backend code for other regions, the admin will need to create a
new directory for all the backend files and connect it to the new database configs that
have been set up.

15.5 Database

15.5.1 Current Configurations
Below is the most recent database structure for the stations table. The current version of
mySQL is 5.6.32.

Figure 58

Here is the latest structure for the station

Figure 59

This is the latest structure for the votes in the database.

15.5.2 Reproduce
In order to reproduce this application into other regions with the same code base, the
admin will need to copy the database tables and clear all the data from them. If it is on
the same server, you will be able to use the same username and password. If not, you
will need to the credentials to access the database.

16.0 Dependencies

16.1 iOS Development
Development & Testing dependencies:

● XCode, version 9.2

16.2 Android Development
Development dependencies:

● Android SDK 16-current
● Jackson Parser: com.fasterxml.jackson.core:jackson-databind:2.8.5
● com.fasterxml.jackson.core:jackson-core:2.8.5'
● 'com.fasterxml.jackson.core:jackson-annotations:2.8.5'
● Exo Player: 'com.google.android.exoplayer:exoplayer:r1.5.3'

Testing dependencies:

● Test runner: android.support.test.runner.AndroidJUnitRunner
● JUnit 4.12

16.3 Front End Development
Development dependencies

● AngularJS CDN version 1.5.9
● AngularJS Route CDN version 1.5.8

16.4 Backend Development / Server
Development dependencies

● PHP current version is 5.3
○ Must be greater than 4.3.0, but less than 5.3

● mySQL

○ Current version 5.6.32

17.0 Work Breakdown

Seth Winslow
● Database / Backend
● Primary contact with client
● Completed work on milestone reports

Kristen Weber
● Front End Admin and Public Web Site
● Completed work on milestone reports

Rachel Harvey
● iOS Development
● Completed work on milestone reports

Nick Torres
● Android Development
● Completed work on milestone reports

18.0 Conclusions
What a semester it has been. We hit a few bumps through the journey, but we are still thrilled
with all the work that we were able to accomplish. We have built a well suited application to be
able to last for months and years ahead.

